

# Saliva Accuracy Analysis as a Non-Invasive Method for Determining Blood Type

Dwi Sinta Maharani\*, Firdaus\*\*, Eka Desnita\*\*\*

\*Student of the Faculty of Dentistry, Baiturrahmah University, Padang, Indonesia

\*\*Forensic Department, Baiturrahmah University, Padang, Indonesia

\*\*\*Pharmacology Department, Baiturrahmah University, Padang, Indonesia

Online Submission : 26 January 2025

Accept Submission : 30 January 2026

## ABSTRACT

**Background:** *Phobia is an excessive, irrational, and persistent fear of something, which makes it difficult for someone to carry out certain activities. Psychological disorders such as phobia of blood and injections indicate the need for forensic identification methods without taking blood samples. Blood type identification plays an important role in forensic cases, especially to match the blood type of evidence of victims or perpetrators.*

**Objective:** *To analyze the accuracy of saliva as a non-invasive method for determining blood type in students of the Faculty of Dentistry, Baiturrahmah University, class of 2021. Methods:* *This study is a quantitative observational analytic study with a cross-sectional design. The study population was 80 students selected using the simple random sampling technique. Saliva samples were analyzed using the absorption inhibition method and compared with available blood type data. The data were analyzed using SPSS version IBM 23.0 and Fisher's exact test was performed as an alternative to the chi-square test. Results:* *Blood types A, B, and AB have 100% compatibility in secretor individuals, while blood type O has 0% compatibility because there are no antigen A and antigen B in saliva. Statistical tests show that there is a significant level of accuracy between blood type examination through saliva and blood type in the data ( $p=0.000$ ). Conclusion:* *Overall, it shows that blood type examination using saliva has the same level of accuracy as the conventional method.*

**Keywords:** Blood type, forensic identification, phobia, saliva

**Correspondence:** Firdaus, Forensic Department, Faculty of Dentistry, Baiturrahmah University, Padang, Indonesia. Email: [firdaus\\_drg@yahoo.com](mailto:firdaus_drg@yahoo.com)



**INTRODUCTION**

Psychological disorders are defined and treated as medical problems, psychological disorders are a collection of abnormal conditions involving physical or mental.<sup>1</sup>

Anxiety and fear that is irrational, excessive, and persistent towards something, so that a person is unable to do any activity is called a phobia.<sup>2</sup> The word "phobia" comes from the Greek term "phobos" which means to run (fight), fear and panic (panic-fear), and great fear or terror.<sup>3</sup> Blood phobia is a fear or avoidance of situations directly or indirectly related to blood, wounds, and so on. While injection phobia is a fear or avoidance of various types of injections such as taking samples by injecting into certain parts of the body. The significant impact of psychological disorders such as blood phobia and injection phobia shows the importance of developing forensic identification methods that do not involve blood sampling.<sup>2</sup>

Forensic identification methods are divided into primary examinations, namely fingerprints (dactyloscopy), teeth, and DNA (Deoxyribo Nucleic Acid) and secondary examinations, namely medical characteristics, photography, and the victim's property.<sup>4</sup> Blood type identification is very important in several forensic cases, especially in relation to blood type matching of evidence from victims or perpetrators.<sup>5</sup> Blood type is a genetic substance that is inherited.<sup>6</sup> Blood type identification is generally done based on the ABO blood type system.<sup>7</sup> Human blood types in the ABO system are divided into four types, namely A, B, O, and AB.<sup>8</sup> In general, blood type determination using blood samples sometimes causes fear by individuals, especially children. In addition to blood, blood type antigens are also secreted in various other body secretions, such as saliva which can determine blood type.<sup>9</sup> Saliva is a complex biological fluid secreted by the major and minor salivary glands.<sup>10</sup>

Blood type examination through saliva can only be done on individuals with secretor status. Secretor groups are individuals who secrete blood type antigens that are identical to their red blood cells in body fluids such as saliva. Conversely, the non-secretor type is an individual with blood type A, B, or AB who does not secrete ABO blood type antigens in the body fluids.<sup>11,12</sup> To find out whether someone is a secretor or non-secretor can be determined through a secretor test.<sup>12</sup> Blood type examination using the inhibition absorption method is a procedure to determine blood type indirectly, which utilizes materials other than blood, such as saliva, sperm, gastric fluid, and other body fluids.<sup>9</sup>

Blood type examination using the inhibition absorption method has the same principle as the ABO blood type examination which is commonly performed, but uses a different method.<sup>13</sup>

Research from Lakade's (2018) in India, showed that 100% of subjects from saliva samples were secretors and ABO blood type determined from saliva swab samples showed 100% correlation with blood type determined from extraction socket blood. The results of research from Kimberly Alsbrooks & Klaus Hoerauf's (2022) in the United States, showed that the prevalence rate of needle fear was 20-30% in the 20-40 year age group and of participants who experienced injection phobia, 52.2% stated that they avoided blood collection, followed by 49% who refused blood donation, and 33.1% who refused vaccination. Therefore, this can encourage the use of saliva as a non-invasive method in routine blood tests, especially in children who suffer from blood and injection phobia.<sup>9,14</sup>

Based on the background description above, researchers are interested in analyzing the level of accuracy of using saliva as a non-invasive method in determining blood type. This research will be conducted on students of the Faculty of Dentistry, Baiturrahmah University, class of 2021, who have never

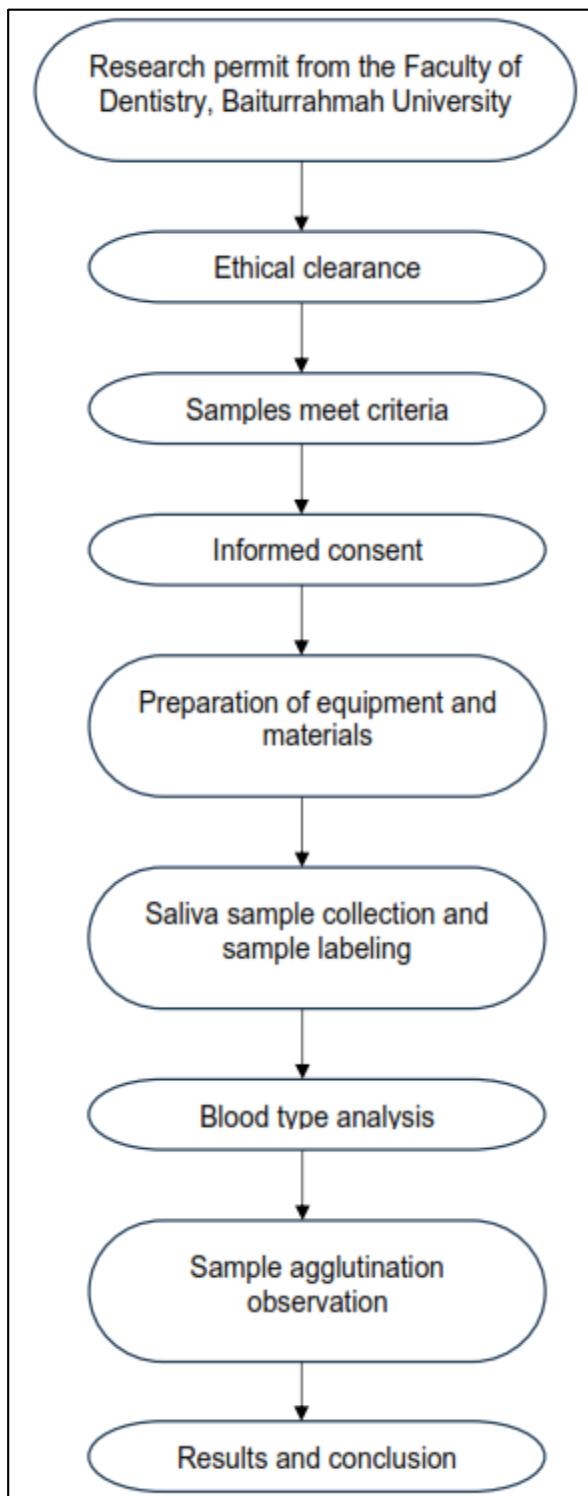
previously conducted research on determining blood type through saliva and there are several students who suffer from symptoms of blood and injection phobia.

This research is expected to broaden the scientific horizons of dentistry, particularly in forensic odontology, by utilizing saliva as a non-invasive means of blood typing. Practically, this study underpins the development of safer, more efficient, and more comfortable diagnostic procedures for patients who struggle with conventional blood sampling.

## MATERIALS AND METHODS

This type of research is quantitative observational analytic with a cross sectional design. This study was conducted on 80 students of the Faculty of Dentistry, Baiturrahmah University, class of 2021, consisting of 71 women and 9 men. The inclusion criteria for this study were 2021 Faculty of Dentistry students who were willing to be included in the study, had signed an informed consent, and knew their blood type. Exclusion criteria included subjects with diseases affecting saliva (e.g., xerostomia and Sjögren's syndrome).

The minimum sample size for this study was 80 determined using the Slovin formula. To obtain representative data, Slovin's Formula was employed with a 5% error margin. This method was chosen because the subject population size was predetermined, ensuring an efficient and scientifically valid saliva. The dependent variable was blood type. This study was conducted in May- December 2024 at the LLDIKTI Laboratory, Region X, West Sumatra. Participants who consent to join this study are individuals who already know their blood type. This research has received ethical approval from the Baiturrahmah University ethics committee with No.A.004/KEPKFKGUNBRAH/XI/2024.


The research procedure begins with preparing the tools and materials, namely an

oven, test tube rack, test tube, centrifuge, hot plate, dropper, beaker, measuring cup, incubator, saliva, antisera reagent (Anti A, Anti B, Anti D), distilled water, 5% erythrocyte suspension, sterile gauze-wrapped cotton (as a test tube cover), handscoons, face mask, and plastic clip (as a test tube container when collecting saliva).

Sterilize all tools and materials that will be used in this research. Saliva samples were collected in clean and dry test tubes, labeled (Name-Blood Type), then diluted with distilled water (1:2). The samples were heated in a boiling water bath for 10 minutes, cooled, centrifuged at 3000 rpm for 10 minutes, then the supernatant (the upper centrifugation result which is a liquid separated from the sediment) was discarded. Antisera reagents (Anti-A, Anti-B, Anti-D) in a 1:4 dilution were added to each test tube (1 drop/tube) according to blood type. The sample was shaken well, incubated at 37°C for 10 minutes, the subject population size was predetermined, ensuring an efficient and scientifically valid sampling process. Sampling used a simple random sampling technique, according to the calculation results using the Slovin formula. The independent variable in this study was shaken well, incubated at 37°C for 10 minutes, then 5% erythrocyte suspension (1 drop/tube) was added, shaken well, and incubated again for 15 minutes at the same temperature (37°C). Furthermore, the samples were examined for agglutination. If one of the test tubes did not experience agglutination, this indicated a positive secretor status, while agglutination in all test tubes indicated a negative secretor status. Tubes that do not experience agglutination should show the ABO blood type.<sup>9,13,15</sup> Data were analyzed using SPSS to describe variable characteristics, followed by Fisher's exact test as an alternative to the chisquaretest to assess the accuracy between saliva-based and conventional blood type results.

The findings were processed and presented in tables and percentages.



**Figure 1. Flowchart** Research Methods

## RESULT

**Table 1. Characteristics of Research Samples**

| Characteristics of Research Samples | f  | %     |
|-------------------------------------|----|-------|
| Age                                 |    |       |
| 20 years old                        | 3  | 3,75  |
| 21 years old                        | 48 | 60    |
| 22 years old                        | 25 | 31,25 |
| 23 years old                        | 2  | 2,5   |
| 24 years old                        | 2  | 2,5   |
| Gender                              |    |       |
| Male                                | 9  | 11,25 |
| Female                              | 71 | 88,75 |
| Blood type                          |    |       |
| A                                   | 18 | 22,5  |
| B                                   | 23 | 28,75 |
| AB                                  | 10 | 12,5  |
| O                                   | 29 | 36,25 |
| Total                               | 80 | 100   |

Table 1 shows that from 80 research samples, the most dominant age is 21 years old, which is 48 people (60%), while the least age is 23 years old and 24 years old, each only 2 people (2.5%). The most dominant gender is female, which is 71 people (88.75%), while the least gender is male, which is 9 people (11.25%). The most dominant blood type is blood type O, which is 29 people (36.25%), while the least blood type is blood type AB, which is 10 people (12.5%).

**Table 2. Status of Secretor and Non-Secretor Groups**

| Groups       | f  | %     |
|--------------|----|-------|
| Secretor     | 49 | 61,25 |
| Non-Secretor | 31 | 38,75 |
| Total        | 80 | 100   |

Table 2 shows that among the 2021 intake of students of the Faculty of Dentistry, Baiturrahmah University, the majority are included in the secretor group, namely 49 people (61.25%), while the rest are included in the non-secretor group, namely 31 people (38.75%).

**Table 3.** Secretor Status Based on Blood Type

| Blood Type | Secretor Status |    | Total | %   |
|------------|-----------------|----|-------|-----|
|            | Yes             | No |       |     |
| A          | 18              | -  | 18    | 100 |
| B          | 22              | 1  | 23    | 100 |
| AB         | 9               | 1  | 10    | 100 |
| O          | -               | 29 | 29    | 0   |
| Total      | 49              | 31 | 80    |     |

Table 3 shows that the secretor status based on blood type in students of the Faculty of Dentistry, Baiturrahmah University, class of 2021, with blood type A, all samples have secretor status, totaling 18 people (100%). In blood type B, 22 people (100%) have secretor status, while 1 person is a non-secretor. Samples with blood type AB mostly have secretor status, namely 9 people (100%), while 1 person is a non-secretor. Conversely, all samples with blood type O are classified as non-secretors, totaling 29 people (0%).

**Table 4.** Blod Type Test Conformity Results

| Blood Type | Blood Type Data | Blood Type Results (Saliva) |              |      |
|------------|-----------------|-----------------------------|--------------|------|
|            |                 | Secretor                    | Non-secretor | %    |
| A          | 18              | 18                          | -            | 100% |
| B          | 23              | 22                          | 1            | 100% |
| AB         | 10              | 9                           | 1            | 100% |
| O          | 29              | -                           | 29           | 0%   |
| Total      | 80              | 49                          | 31           |      |

Table 4 shows the results of blood type examination suitability using saliva has a good level of accuracy, the same as the available blood type data (conventional method). Blood types A, B, and AB have a 100% suitability rate in secretor individuals. In contrast, blood type O has a 0% suitability rate, where all blood type O samples are non-secretors and are not detected by the saliva.

**Table 5** The results of statistical tests using the Fisher's exact test

| Saliva       | Blood Type Data |    |    |    | Total | p-value |
|--------------|-----------------|----|----|----|-------|---------|
|              | A               | B  | AB | O  |       |         |
| A            | 18              | 0  | 0  | 0  | 18    |         |
| B            | 0               | 22 | 0  | 0  | 22    |         |
| AB           | 0               | 0  | 9  | 0  | 9     | 0.000   |
| Not detected | 0               | 1  | 1  | 29 | 31    |         |
| Total        | 18              | 23 | 10 | 29 | 80    |         |

Table 5 shows the results of statistical tests using the Fisher's exact test obtained a *p* value of 0.000 (*p* < 0.05), which means that there is a significant relationship between saliva and blood type data in students of the Faculty of Dentistry, Baiturrahmah University, class of 2021.

## DISCUSSION

This study was conducted on students of the Faculty of Dentistry, Baiturrahmah University, class of 2021 who have diverse characteristics. Blood type can be identified from various body fluids, which are then determined by the individual's status as a secretor or non-secretor. Secretor individuals are individuals who secrete blood type antigens into body fluids such as saliva, tears, and sweat. Conversely, non-secretor individuals are individuals who do not secrete blood type antigens in their body fluids.<sup>15</sup>

The results of the study in table 2 are in line with the study conducted by Alqadri's (2016) in Padang City, from 54 samples, it was found that the secretor status was 42 samples (78%) while the non-secretor status was 12 samples (22%). Likewise with the study conducted by Tejasvi's (2021) in India, from 60 samples, 52 samples (86.66%) were included in



the secretor group and 8 samples (13.33%) were included in the non-secretor group. Overall, the results of several studies emphasize that the secretor group tends to be more dominant than the non-secretor group, because the distribution of the secretor and non-secretor groups in the human population is 85% included in the secretor group, while 15% included in the non-secretor group which means that most of the human population has the SeSe or Sese (secretor) gene which encodes a certain fucosyltransferase enzyme found in the epithelium of secretory tissues, such as saliva, tears, and sweat. This enzyme allows the body fluid to produce the same blood group antigen as the antigen on red blood cells, but in a water-soluble form. Meanwhile, the non-secretor group has the se gene, which is unable to produce antigens in soluble form, so there are no blood group antigens in their body fluids.<sup>11,15</sup>

This study only calculates the secretor group, while the non-secretor group is not included in the calculation so that based on the research results presented in table 3, blood groups A, B, and AB have a 100% compatibility rate in secretor individuals.

Meanwhile, in blood group O, all samples have non-secretor status, which means that there are no blood group O subjects with secretor status. Research conducted by Klarmann's (2010) quoted from Saboor's (2014) showed that in blood group O, the limitations of this method are caused by low antigen concentrations such as vWF Ag (von willebrand factor antigen) and FVIII Ag (Factor VIII antigen) levels which play a role in hemostatic function.<sup>16</sup> The low levels of vWF Ag and FVIII Ag in body fluids, which are influenced by genetic factors, make it difficult to detect secretor status in blood group O. The results of this study make it clear that each blood group has a different antigen distribution pattern, so it is important to understand the biochemical characteristics of each blood group in order to improve the effectiveness of saliva as a non-invasive method.<sup>17</sup>

Table 4 shows that blood type examination using the saliva method has a good level of accuracy, the same as the conventional method. Blood types A, B, and AB in secretor individuals have 100% conformity with conventional method blood type data, while blood type O has 0% conformity with conventional method blood type data because all blood type O samples are non-secretors that are not detected using the saliva method. The results of this study differ from the study conducted by Rajawat's (2023) in India, out of 300 samples, the majority of those with secretor status were blood types A and AB with accuracy levels of 87.14% and 94.28% respectively. Meanwhile, blood type B has an accuracy level of 73.3% and blood type O has an accuracy level of 85.04%. Likewise, the study conducted by Lakade's (2018) in India, showed that all samples were secretors (100%) and the ABO blood type determined from dried saliva samples showed a 100% correlation with the blood type determined from the extraction socket blood.<sup>9,13</sup>

The results of this study were influenced by the absence of antigen A and antigen B in body fluids, including saliva. Most individuals with blood type O have 0% compatibility because blood type O does not have antigen A or B on the surface of red blood cells, so they cannot be secretors of antigen A or B.<sup>18</sup> In addition, secretor status is also associated with various medical conditions, such as ankylosing spondylitis (inflammation of the spine), gastric ulcers, ovarian cysts, and several types of cancer, including squamous cell carcinoma.<sup>9,19</sup>

The results of the statistical test using the Fisher's exact test as an alternative to the chi-square test obtained a p value of 0.000 ( $p < 0.05$ ), which means there is a significant level of accuracy between blood type testing through saliva and blood type data in students of the Faculty of Dentistry, Baiturrahmah University, class of 2021. These results are in line with the research of Rajawat et al., 2023 in India, which showed a significant relationship between ABO

blood type, rhesus, and secretor status. These findings confirm that blood type testing using saliva has good potential to detect blood type accurately, especially in secretor individuals.<sup>13,20</sup>

## CONCLUSION

Blood type examination using saliva has an accuracy level as good as the conventional method. Blood types A, B, and AB have 100% compatibility in secretor individuals, while blood type O is not detected by the saliva method because there are no antigen A and antigen B in saliva. Statistical tests show that there is a significant level of accuracy between blood type examination through saliva and blood type in the data ( $p=0.000$ ).

Further research is recommended to develop a more sensitive detection method for blood type O, for example by using anti-H reagents, considering the limitations of saliva as a non-invasive method in detecting secretor status in this blood type. In addition, studies with a wider population are needed to understand the prevalence and characteristics of secretors and non-secretors, because determining ABO blood type through saliva individuals, this method has limitations and can only be examined using conventional methods. Examination using conventional methods is also recommended to be carried out to increase the accuracy of the available blood type data.

## ACKNOWLEDGMENT

Thank you to all parties who have helped in this research, both in the form of moral support, material support, and academic guidance, so that this research can be carried out well and produce useful findings.

## REFERENCES

- Yunita E, Suhita BM, Koesnadi K. Analysis of Psychological Disorder Tendency for Polygamous Women Reproductive Health in Pamekasan

- Madura. J Qual Public Heal. 2020;3(2):309–18. <https://doi.org/10.30994/jqph.v3i2.78>
- Agustini. Penerapan cognitive behavior therapy untuk mengurangi fobia darah pada usia dewasa awal. J Ilm Psikol Fak Psikol Univ Mercubuana Jakarta. 2018;2(1):89–93. <https://dx.doi.org/10.22441/biopsikososial.v2i1.7225>
- Atrup, Fatmawati D. Hipnoterapi teknik regression therapy untuk menangani penderita glossophobia. Clin Pediatr Dent. 2018;11(2):100–4. <https://doi.org/10.29407/pn.v3i2.11791>
- Saputri AHN, Junitha IK, Suaskara IBM. Forensic Identification Based on Primary and Secondary Examination as Determination of Victims Identifiers: North Luwu Flood Case Study, South Sulawesi. J SIMBIOSIS XI. 2023;2. <https://doi.org/10.24843/JSIMBIOSIS.2023.v11.i01.p01>
- Sandwinata MF. Analisis DNA dalam Kasus Forensik. J Teknosains. 2018;12(1):1–10. <https://doi.org/10.24252/teknosains.v12i1.7863>
- Anggraeni DN. Gambaran Pengetahuan Golongan Darah untuk Memenuhi Kebutuhan Transfusi Darah. J Sehat Mandiri. 2022;17(1):28–34. <https://doi.org/10.33761/jsm.v17i1.590>
- Rahayu DP, Cahyaningrum DC, Nurcahyo B. The Effect of Wall Type and Environmental Conditions toward Blood Type Identification Success Rate in Identifying Criminal Evident. J Biol Trop. 2021;21(2):607–14. <https://doi.org/10.29303/jbt.v21i2.2781>
- Oktari A, Silvia ND. Pemeriksaan Golongan Darah Sistem ABO Metode Slide dengan Reagen Serum Golongan Darah A, B, O. J Teknol Lab. 2016;5(2):49–54. Retrieved from <https://teknolabjournal.com/index.php/Jtl/article/view/78>
- Lakade L, Velani PR, Shah P. Determination of ABO Blood Groups and Rh Typing from Dry Saliva. Int J Clin Pediatr Dent. 2018;11(2):100–4. <https://doi.org/10.5005/jp-journals-10005-1493>
- Chatterjee S. Saliva as a forensic tool. J Forensic Dent Sci. 2019;11(1):1–4. <https://pmc.ncbi.nlm.nih.gov/articles/PMC6822307/>
- Alqadri A, Rofinda ZD, Susanti R. Gambaran Golongan Sekretor dan Nonsekretor yang



Diperiksa Melalui Saliva Mahasiswa Pendidikan Dokter Fakultas Kedokteran Universitas Andalas. J Kesehat Andalas [Internet]. 2016 Jan 1;5(1 SE-Research Articles). Available from: <https://jurnal.fk.unand.ac.id/index.php/jka/article/view/433>

12. Oktaviana I, Oktari A, Sugiatmini S. Pemeriksaan status sekretor sistem golongan darah ABO dalam semen. JAB-STABA. 2018;2(2):1–6.

13. Rajawat G, Ramalingam K, Pareek R. Assessment of salivary ABO blood group antigens and secretor status. Cureus. 2023;15(4):1–9. <https://doi.org/10.7759/cureus.37415>

14. Alsbrooks K, Hoerauf K. Prevalence, causes, impacts, and management of needle phobia. PLoS One. 2022;17(11):1–15. <https://doi.org/10.1371/journal.pone.0276814>

15. Tejasvi MLA, Bukkya JL, Rao PR, Bhayya H. Evaluation of the secretor status of ABO blood group antigens in saliva. Biomed J Sci Tech Res. 2020;26(5):20335–9. <https://doi.org/10.1055/s-0041-1723083>

16. Dhaneswara IPRI. VON WILLEBRAND DISEASE. J Syntax Fusion. 2022;2(02). Available from: [https://www.ncbi.nlm.nih.gov/books/NBK45922\\_2/](https://www.ncbi.nlm.nih.gov/books/NBK45922_2/)

17. Ward SE, O'Sullivan JM, O'Donnell JS. The relationship between ABO blood group, von Willebrand factor, and primary hemostasis. Blood. 2020 Dec;136(25):2864–74. <https://doi.org/10.1182/blood.2020005843>

18. Gilmiyarova F, Kuzmicheva V, Ryskina EA, Kolotyeva N, Gusyakova O, Baisheva G, et al. Saliva as a diagnostic tool for AB0 blood group determination. Biomed J Sci Tech Res. 2020;26(5):20336–9. <http://dx.doi.org/10.26717/BJSTR.2020.26.004424>

19. Abror Y. Pemeriksaan golongan darah AB0 menggunakan homemade antisera. J Ris Kesehat Poltekkes Depkes Bandung. 2023;15(1):186–92. <https://doi.org/10.34011/juriskesbdg.v15i1.2199>

20. Ramadhani GM, Adriano, Chomariyah. Odontologi forensik sebagai metode identifikasi dan alat bukti pengadilan. J Huk dan Etika Kesehat. 2023;3(2):52–66. Available from: <https://jhek.hangtuah.ac.id/index.php/jurnal/article/view/127>

