LITERATURE REVIEW

Comparing Fluoride Varnish, Fissure Sealant and Ozone for Children Caries Prevention

Dhia Fadhilah Budiman*, Naninda Berliana Pratidina**, Eka Chemiawan**

*Bachelor Program Student at Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia **Department of Pedodontia, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia

Online submission: 10 Juni 2022 Accept Submission: 10 November 2022

ABSTRACT

Background: Caries is the most prevalent oral health disease in children globally. Well-known method such as fluoride varnish and fissure sealant has been used to prevent caries overtime. Ozone therapy considered as a new innovation in caries prevention for children which has not been studied much for its effectiveness compared to the other popular method. Objective: This review aimed to compare caries preventive methods with fluoride varnish (FV), fissure sealant (FS) and ozone (O) for children and decide which method is the most effective. Literature Study: PubMed, SpringerLink, EBSCOhost and Science direct were searched from December 2021 to January 2022. The criteria included all randomized controlled trials and clinical trials comparing the caries preventive effect between FV, FS and O on children's permanent teeth. Discussion: A total of 12 articles were included. Regarding dentin caries prevention, 2 studies found resin FS in favour of no FS and 2 studies found FV in favor of controls. 1 study agreed glass ionomer FS and no FS comparable. 3 studies agreed FV and FS were comparable. 1 study agreed resin FS and glass ionomer FS comparable. 1 study also found FV, FS and O comparable. Regarding dentin remineralization, 2 studies found O were comparable with FS dan calcium hydroxide base. These methods are safe for children. Conclusion: Fluoride varnish, fissure sealant and ozone are effective in preventing children's caries with their own benefits and drawbacks. None of the methods is superior over another as there were a variety of the data reported.

Keywords: Caries Prevention, Children, Fissure Sealant, Fluoride Varnish, Ozone.

Correspondence: Dhia Fadhilah Budiman, Bachelor Program Student at Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia. Email: dhia18001@mail.unpad.ac.id

Available at http://journal-denta.hangtuah.ac.id/index.php/jurnal/issue/view/22 DOI: 10.30649/denta.v18i1.1

Denta Jurnal Kedokteran Gigi, Februari 2024; Vol.18 No.1; Hal 1-17

INTRODUCTION

Caries is a multifactorial disease that arises from environmental interaction, habits and genetic factors. Caries involve a complex process of remineralization and demineralization of enamel caused by acid produced by microorganisms inhabiting the dental plaque.1 Caries is the most prevalent oral health disease in children around the world. The World Health Organization (WHO) stated caries incidence in children is around 60-90%.2 Indonesia Basic Health Research (Riskesdas) also stated that in 2018 as much as 92,6% children aged 5-9 in Indonesia had caries.3 These events seemed to be far from the target WHO had set in 2020 to achieve 80% of children in the world to be free from caries.4

Children tend to be exposed to caries as the anatomical structure of the teeth and early eruption time make it difficult to cleanse by the younger children.⁵ As they get older, children with caries in their primary teeth are prone to have higher risk to develop caries in their permanent teeth.⁶ Caries prevention is important for children, as the caries experience in children will be a strong indicator for future caries risk.⁷ Tickle M divides evidence based intervention to prevent caries into three big categories: lowering the frequency and intake of carbohydrate, maintaining the balance of remineralization and demineralization and sealing the teeth from acid.⁸

An initiation to increase favorable conditions in the oral cavity to prevent caries can be done by the use of fluoride. Topically application of fluor inhibits the absorption of salivary proteins on the enamel surface, thereby inhibiting formation of pellicle and plaque as well as increasing resistance of enamel to acids by creating a fluorapatite layer which is stronger against demineralization. Fluoride varnish is a topical fluoride that is considered sufficient to protect children with moderate to high caries prevalence. It is indicated as a prevention program for children with active caries and as an

alternative treatment before fissure sealant placement is adequate. Fluoride varnish is recommended for children as it is easy and fast to apply. It works by releasing fluoride gradually over time and only a little amount of products needed to protect the whole tooth. However, there are some drawbacks of using fluoride varnish including reversible tooth discoloration, risk of acute toxicity and the unpleasant taste that is declined by children.

Other caries prevention initiation can be done by protecting teeth from acids produced by bacteria using fissure sealants. Fissure sealant is a resin material that is placed on the occlusal surface of the tooth as a barrier, preventing the growth of biofilm and accumulation of debris that can form caries in the molars groove. Disadvantages encountered when applying fissure sealants are that proper fluid control techniques are required and there are risk that it will come off and become worn overtime. 14

In the 21st century new alternatives for caries prevention have emerged, one of which is ozone therapy. Ozone as a caries treatment agent in certain amounts is powerful enough to stop caries, even for a deep caries lesion. Ozone not only kills microorganisms on the tooth surface, but also destroys their biomolecular residues.¹⁵ Ozone application itself does not provide any additional benefit for caries prevention, it only creates a 'clean' environment that can prevent caries from developing further.¹³ This therapy can be an option for anxious children and as an alternative to restorative treatment using an invasive bur.¹⁶

In the past study, Kalnina et al¹⁷ conducted a clinical trial comparing prevention of occlusal caries in Latvia children with interventions of fluoride varnish, fissure sealant and ozone. This study concluded the three caries prevention agents were recommended to prevent occlusal caries, but there was no significant difference in the effectiveness of the three agents. The researcher explained that there is still no literature study that compares the three materials.

DOI: 10.30649/denta.v18i1.1

© 0 9 0

The author is interested to research and seek further information on this topic, because there was still no evidence based study that compared ozone effectiveness with another widely used method for caries prevention, such as fissure sealant and fluoride varnish using literature review approach.

LITERATURE STUDY

The type of research used is literature review with a rapid review approach. The articles reviewed derived from PubMed, SpringerLink, EBSCOhost and Science direct databases that met the following criteria:

- Articles that discuss the effect of fluoride varnish, fissure sealant and ozone for caries prevention
- Articles with children having an erupting or fully erupted permanent teeth
- 3. Articles with randomized controlled trials and clinical trials design
- 4. Articles published in the last ten years
- 5. Articles in English

Articles that full text was not available, in the form of narrative review, case report or case series, articles with children who have certain health problems and non-human participants were excluded from this study.

Articles were searched from December 2021 to January 2022 using combination of the keywords "fluoride varnish", "fissure sealant", "ozone", "caries" and "children", with added conjunctions "AND" and "OR" to specify the search results. Filtering menus in each database were used. The results of the articles obtained were then filtered using the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis). Eligible articles are then extracted and analyzed based on the outcomes measured in the study. The strength of recommendations will be evaluated using SORT (Strength of Recommendation Taxonomy). 18

The subjectivity risk assessment of the articles were reviewed using the Cochrane risk of bias tool version 2.¹⁹ The risk of bias will be

assessed based on 5 domains: bias arising from the randomization process, bias due to deviation from intended intervention, bias due to missing outcome data, bias in measurement of the outcome and bias in selection of the reported outcomes. Furthermore, the overall risk of bias will be presented in the form of traffic light graphs.

DISCUSSION

A total of 1,073 articles were obtained from the databases. Thirty-three articles were excluded, as they were duplicates. A total of 1,040 articles were screened from titles and abstracts; 972 articles did not fit the purpose then excluded. Furthermore, 55 articles were read in full text. Twelve articles were found to meet the eligibility criteria then included in qualitative analysis.

Articles covered were mostly from China and Brazil, with three articles each. The study designs included randomized controlled trials, randomized clinical trials, clinical trials and longitudinal clinic studies with parallel or split mouth methods. Research study periods range from 12 to 36 months. The results of the articles identified from this rapid review is illustrated in the PRISMA flow chart in Figure 1.

Figure 1. PRISMA flow chart diagram

Based on the evaluation of the quality of evidence using SORT, the strength of

DOI: 10.30649/denta.v18i1.1

⊚ 0 9 0

recommendation for this study was B (moderate). Two articles had good quality, patient-oriented scientific evidence (level 1) and five articles had limited quality scientific evidence, patient-oriented (level 2). Subjectivity

risk assessment results showed seven out of twelve articles reviewed had some concerns regarding their overall risk of bias. Summary of the data extracted from the articles reviewed presented in Table 1.

Table 1. Summary of the data extracted from the included study

Researcher (Year)	Title	Location	Study Design	Level of Evidence	Risk of Bias
Arruda et al (2012)	Effect of 5% fluoride varnish application on caries among school children in rural Brazil: A randomized controlled trial	Brazil	Randomized controlled trial	3	Some concerns
Liu et al (2012)	Randomized trial on fluorides and sealants for fissure caries prevention	China	Randomized clinical trial	2	Some concerns
Muller-Bolla et al (2013)	Effectiveness of school-based dental sealant programs among children from low-income backgrounds in France: a pragmatic randomized clinical trial	France	Randomized clinical trial	1	Low risk
Oliveira et al (2013)	Comparison of the caries-preventive effect of a glass ionomer sealant and fluoride varnish on newly erupted first permanent molars of children with and without dental caries experience	Brazil	Longitudinal clinic study	3	High risk
Liu et al (2014)	Glass ionomer ART sealant and fluoride-releasing resin sealant in fissure caries prevention-results from a randomized clinical trial	China	Randomized clinical trial	2	Low risk
Unal et al (2015)	Remineralization Capacity of Three Fissure Sealants with and without Gaseous Ozone on Non-Cavitated Incipient Pit and Fissure Caries	Turkey	Clinical trial	3	Some concerns
Kalnina et al (2016)	Prevention of occlusal caries using a ozone, sealant and fluoride varnish in children	Latvia	Clinical trial	3	High risk
Chestnutt et al (2017)	Fissure Seal or Fluoride Varnish? A Randomized Trial of Relative Effectiveness	UK	Randomized controlled trial	2	Some concerns
Safwat et al (2017)	Clinical Evaluation of Ozone on Dentinal Lesions in Young Permanent Molars using the Stepwise Excavation	Egypt	Randomized controlled clinical trial	3	Some concerns
Wu et al (2020)	Effectiveness of fluoride varnish on caries in the first molars of primary schoolchildren: a 3-year longitudinal study in Guangxi Province, China	China	Randomized controlled trial	2	High risk
Hesse et al (2021)	Atraumatic Restorative Treatment- Sealed versus Nonsealed First Permanent Molars: A 3-Year Split- Mouth Clinical Trial	Brazil	Clinical trial	2	Some concerns
Tahani et al (2021)	Fissure sealant therapy as a portable community-based care in deprived regions: Effectiveness of a clinical trial after 1 year follow-up	Iran	Randomized clinical trial	1	Some concerns

This study included a total of 5.125 randomized participants. Participants' ages ranged from five to fourteen, including both

male and female gender. The articles reviewed included children with caries-free permanent first molars or that had early

© 0 9 0

caries lesion with ICDAS (International Caries Detection and Assessment Score) code 1-2 which already fully erupted or were in the eruption stage, healthy, cooperative and had high caries risk. The article excluded children who had been under medication in the last 3 weeks, allergic to colophony, using orthodontic appliances and following other clinical trials.

Majority of caries prevention test materials were applied to the permanent first molars. Only one articles applying material on the permanent premolars¹⁷.

The types of fissure sealants studied were resin, fluoride-releasing resin and glass ionomer. Fissure sealant was applied to the occlusal, occlusal-buccal and occlusal-palatal surface. Two articles^{20,21} used conventional glass ionomer sealant with finger press technique, while the other two^{22,23} used packable glass ionomer sealant.

Fluoride varnish was applied on the entire tooth surface or selective only to the occlusal, occlusal-buccal and occlusal palatal surfaces. The fluoride varnish content covered is 5% sodium fluoride and 0.1%

difluorsilane with doses ranging from 0.4 to 0.5 mL per application. Fluoride varnish applications were repeated every follow-up period.

The type of ozone studied in the articles covered was gaseous, which is applied on the entire surface of the molar teeth with a silicone tipped pen-like device. The length of gas exposure ranged between 6 and 40 seconds. After the application, a remineralizing solution was applied on two articles 17,24 studied.

Criteria for assessing caries level for majority of the articles were carried out by recording dentinal caries lesions (ICDAS code 3-6) at the final examination, changes in DMFT (Decayed, Missing and Filled Teeth) or DMFS (Decayed, Missing and Filled Surface for permanent teeth) scores and decreased DIAGNOdent™ score. Articles with fissure sealant intervention also measured sealant retention rates and correlated them with caries rates.

Summary of the characteristics of all the articles reviewed presented in Table 2.

Table 2. Summary of the characteristics of all the articles reviewed

Researcher (year) Duration	Initial Sample (Finals)	Age	Evaluation of the Material Delivery Method	Caries Assessment Criteria/ Index (Calibration)	Type of Material Analyzed	Main Findings
Arruda et al (2012) 12 months	379 (210)	7- 14	Tooth brushing, drying, isolation, varnish application on all tooth surface, post application instructions	ICDAS criteria and caries experience in permanent tooth (DFS score) by 4 calibrated examiners (Kappa 0.59- 0.93)	Fluoride varnish, 5% NaF— sodium fluoride (Cavity Shield®), 2 times/ year Placebo varnish, 2 times/ year	 Varnishes group has lower DFS index than placebo group Caries reduction up to 40% with NaF varnish Two annual applications of varnishes reduce caries significantly compared to two annual placebo application None of side effect reported

 Θ_{000}

Liu et al 501 7-Sealant applied Caries Fluoride-1. Dentinal caries (482)11 to occlusal development (2012)releasing incidence on 24 months FPM ICDAS 0into dentin resin three 2, light cured (ICDAS 4-6) sealant intervention and sealant (Clinpro®), groups were retention by baseline Isolation, lower than calibrated varnish control group application on 2. Caries examiner Fluoride varnish, 5% occlusal FPM, (Kappa > 0.9)reduction rate post application NaF of NaF varnish instructions (Duraphat® 39%, SDF 41%), 2 times/ and resin year sealant 60% 3. The three 38% SDF intervention groups have solution (Saforide®) similar efficacy , 2 times/ to prevent pit and fissure vear caries on FPM Placebo 4. Complaints of control, 2 bitter taste after SDF application times/ year Muller-Bolla 276 6-7 Sealant applied Caries Resin 1. FPM with (253)on occlusal incidence sealant et al sealant were (2013)(ICDAS 3-6) (Delton FPM ICDAS 0lower at risk of 12 months marked with D₃₋ 2, given oral Plus®), developing new hygiene and 6MFT and d3baseline caries caries 6mft, sealant compared to education retention by Control. control group calibrated without 2. Caries examiner intervention reduction as of (Kappa 0.75 74% with resin and 0.88) sealant 3. Sealant retention 52.7%, lower rates on upper iaw 4. None of side effect reported Oliveira 80 6-8 Prophylaxis Enamel and Pink glass 1. Teeth sealed ionomer et al (2013) using pumice, using GI dentin caries sealant applied sealant 24 months with visual and sealants on occlusaltactile methods, (Fuji develops more palatal/ sealant Triage®), caries than occlusal-buccal retention using baseline fluoride varnish FPM using Simonsen 2.70% of caries criteria by 2 Fluoride micro brush lesions examiners. varnish originated from NaF 5% Varnish applied group with on occlusal-No information (Durafluor® previous caries palatal/ of examiner's), 2 times a experience occlusal-buccal (primary teeth) calibration vear 0,5 mL dose/ 3. Caries application prevention effect of GI sealant and

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

7	ı	1	Ī	I	ı	
Liu et al	280	7-9	Isolation,	Dentinal caries	ART GI	fluoride varnish were comparable 4. GI sealants has bad retention, only one sealant retained fully at the end of studies 1. More dentin
(2014) 24 months	(261)		sealant applied on occlusal FPM ICDAS 0-2, light cured Isolation, sealant applied using finger press technique	(ICDAS 4-6) and sealant retention by 2 calibrated examiners (Kappa > 0.88)	sealant (Ketac- Molar Easymix®), baseline Fluoride releasing- resin sealants (Clinpro®), baseline 38% SDF solution, 2 times/ year Fluoride varnish, 2 times/ year	caries proportion on ART GI sealants, compared to resin sealant (not significant) 2. Sealant retention (full and partial) is better significantly on resin sealants (75%) than ART GI sealants (52%) 3. ART sealant and resin sealant are comparable to prevent caries fissure for 24 months 4. None of side effect reported
Unal et al (2015) 12 months	60 (167)	7-9	Gaseous ozone application using HealOzone generator on FPM surface 615 cm³/min 40 seconds, then remaining gas vacuumed for 10 seconds Aegis® and Helioseal® sealants applied by pressing to tooth surface, Fuji® sealant in packable capsules	Caries remineralization evaluation with DIAGNOdent™ , retention sealant by 2 calibrated examiners (Kappa 0.88 and 0.93)	Ozone gas, 40 sec + sealant (Aegis®, Fuji®, Helioseal®) , 4 times/ year Control: Sealant only, baselines: Resin sealants amorphous calcium phosphate (Aegis ACP®), GI sealant (Fuji Triage®),	1. Gaseous ozone application followed with Fuji® and Aegis® sealant are effective in caries remineralization (decreased DIAGNOdent™ score), whereas Helioseal® does not 2. Triage® has the worst retention compared to other sealants with resin ingredients significantly (Aegis® and Helioseal®)

DOI: 10.30649/denta.v18i1.1

					fluoride-	3. Gaseous ozone
					releasing resin	application before sealant
					sealant	placement does
					(Helioseal®	not influence
)	sealant retention
						4. Sealant with or
						without
						gaseous ozone
						does not have significant
						influence on
						dentin and
						enamel structure
Kalnina	122	10	Varnish applied	Occlusal caries	Fluoride	1. DMFT index on
et al (2016)	(107)		on occlusal	with DMFT	varnish,	all group
12 months			premolar	index changes,	(Fluocal	increased after
			permanent for 1 minute, post	OHI-S index, bitewing,	solute®), 2 times/ year	12 months (not significant)
			procedure	sealant		2. OHI-S index
			instruction	retention.	Resin sealant	decreased after 12 months
			Prophylaxis,	No information	(Clinpro	3. Occlusal caries
			isolation,	of examiner's	3M®),	rate among test
			etching, sealant	calibration	baseline	groups are not
			applied on occlusal		Ozone gas	significantly different
			premolar		(Prozone®)	4. The three test
			permanent		, 6 seconds	groups are not
			Gaseous ozone		+ remineralizi	significantly different on
			6 seconds on		ng solution,	their
			occlusal		2 times/	effectiveness to
			premolar permanent,		year	prevent occlusal caries
			remineralizatio		Control	occided carree
			n agent 1		without	
			minutes, post procedure		intervention	
			instruction			
Chestnutt	1016	6-7	Isolation,	New caries	Resin	1. Children
et al (2017) 36 months	(835)		sealant applied on occlusal	developed to D ₄₋₆ MFT,	sealant (Delton®),	proportion with dentin caries on
JO ITIOTICIS			FPM	sealant	baseline	their FPM after
				retention by		36 months are
			Isolation, varnish applied	calibrated examiner	Fluoride	not significant, FS 19.6% and
			on entire FPM	(Kappa 0.82	varnish, 5% NaF	FV 17.5% and
			surface dose	and 0.89)	(Duraphat®	2. Resin sealants
			<0.4 mL), 2 times/	has fairly good
					year	retention, 75.4% intact
						3. FV is
						comparable with FS resin to
						prevent caries

DOI: 10.30649/denta.v18i1.1

						4. None of side
						effect reported
Safwat et al (2017) 12 months	81	7-9	Local anesthesia, isolation, tooth cleaning, stepwise excavation, application of ozone gas with HealOzone generator silicon tip for 40 seconds, the remaining gas vacuumed 10 seconds, remineralizing solution (group 2 only)	DIAGNOdent™ score, caries visual and tactile examination by calibrated examiner (Kappa 0.92)	baseline, split mouth divided into: Group I: Ozone gas 40 seconds (Ia), control base Ca(OH) ₂ (Ib) Group II: Ozone gas 40 seconds + remineralizi ng solution (pH Balancer®) 2 ml, 5 seconds (IIa), control base Ca(OH) ₂ (IIb) Intervention temporary sealed until final evaluation	1. No significant difference in dentin color and consistency after ozone application with or without remineralizing solution 2. No significant different among ozone and calcium hydroxide group on dentin color and consistency 3. DIAGNOdent™ value decreased significantly after ozone gas application with and without remineralizing solution 4. Ozone application with or without remineralizing solution has no significant effect to dentin color and consistency after caries excavation
Wu et al (2020) 36 months	2003 (1748)	6-8	Tooth brushing, dried, isolation, applied with 0.4 mL varnish on entire teeth surface, post procedure instruction	Caries prevalence with modified ICDAS, caries development towards dentin (ND01-ND03), DMFT, DMFS by 2 calibrated examiners (Kappa inter- examiner 0.85, intra-examiner 0.84)	Fluoride varnish, 5% NaF (Duraphat®) + oral hygiene instruction, 2 times/ year Control, given oral hygiene education, 2 times/ year	1. Fluoride varnish group has lower caries prevalence, caries development, DMFT and DMFS score compared to control group (significant) 2. None of side effect reported 3. 5% NaF application capable to prevent caries on FPM and recommended as school-based

DOI: 10.30649/denta.v18i1.1

@ 0 0 0 BY NC SA

						prevention
						program
Hesse et al (2021) 36 months	187 (153)	6-8	Tooth brushing, isolation, sealant applied with ART technique on occlusal FPM, petroleum jelly application over the sealant	Caries ICDAS 4-6, sealant retention, changes in DMFT/dmft score by 4 calibrated dental students (Kappa inter- examiner 0.85- 0.94 and intra- examiner 0.70- 0.90)	Vertical split mouth ART GI sealant (Fuji IX®), baseline ART GI sealant (Maxxion®), baseline Control without sealant	1. No significant different on caries development with ART sealants 2. Sealant retention not related with dentinal caries development 3. Children with caries experience at baseline has higher risk on developing caries 4. ART sealant is not more effective than no sealant to reduce FPM dentinal caries
Tahani et al (2021) 12 months	124 (109)	7-9	Prophylaxis, isolation, etching, sealant applied on occlusal-buccal FPM, light cured, fluoride varnish applied on entire teeth, oral hygiene instructions	Caries incidence (ICDAS code 3-6) and sealant retention by 2 calibrated examiners (Kappa 0.82)	Split mouth Resin fissure sealant (Prime Dent®) + fluoride varnish (Asia Chemi Tab®), baseline Control without sealant	1. Caries incidence on teeth without sealant is three times bigger 2. Sealant full retention 41.4% and partially 27.2% 3. There is relationship between sealant retention with new caries incidence 4. Caries reduction by 67% with resin sealant

In this study, the caries prevention effect was categorized based on the measured research outcomes. Based on their ability to prevent dentinal caries, fluoride varnish and fissure sealant (resin and glass ionomer) were effective and comparable in two articles^{22,25}. One article²¹ showed that resin and glass ionomer fissure sealant were comparable in preventing fissure caries. Two

other studies^{26,27} showed a significantly higher caries prevention rate with resin sealants compared to teeth without sealants. Two studies showed fluoride varnish had significant effect on caries reduction compared to placebo²⁷ or oral health education²⁸ alone. One study²⁰ showed glass ionomer sealants were not

 $\bigcirc 090$

significantly different in preventing dentin caries compared to no intervention.

There is only one study¹⁷ which compared caries prevention ability between resin fissure sealant, fluoride varnish and ozone which conclude these interventions had similar efficacy in preventing occlusal caries. Another study also found resin fissure sealant, fluoride varnish and SDF (silver diamine fluoride)29 were not much different in preventing caries from progressing into dentin.

Two studies with ozone, measured the caries prevention effect from the degree of remineralization and the state of dentin (hardness and color) changes. Unal et al²³ which studied ozone application prior the placement of three types of fissure sealants (containing fluoride-releasing resin, glass ionomer and amorphous calcium phosphate) showed a decrease in DIAGNOdent™ score, but not significant. When being compared with sealant only control group, there was no

significant difference of DIAGNOdent™ score between the sealant group with ozone gas or without ozone gas. Another study by Safwat et al²⁴, showed ozone gas with or without additional remineralizing solution did not have a major effect on the color and hardness of dentin. DIAGNOdent™ scores decreased in the ozone group, but were not significant compared to the calcium hydroxide base control.

There were no articles that show one intervention is superior over another by significant difference. There is only evidence of effective caries prevention with fluoride varnish and fissure sealant when being compared with no intervention. A total of six articles 15,21,25,26,28,28 reported no complaints or side effects experienced by children after the intervention of fissure sealant, fluoride varnish or ozone.

The outcome results of the articles reviewed are summarized in Table 3.

Table 3. Summary of the research outcome

	Research Summary	Effective	Not significantly different
Based on ability to prevent dentinal caries	Resin sealant vs. fluoride varnish GI (glass ionomer) sealant vs. fluoride varnish		Chestnutt (2017) Oliveira (2013) Liu (2014)
(occlusal/pit and fissure caries)	Resin sealant vs. ART GI sealant Resin sealant vs. no intervention	Muller- Bolla (2013),	,
	GI sealant vs. no intervention Fluoride varnish vs. control/placebo	Tahani (2021)	Hesse (2021)
	Resin sealant vs. fluoride varnish vs. ozone gas Resin sealant vs. fluoride varnish vs. SDF	Arruda (2012), Wu (2020)	Kalnina (2016) Liu (2012)
	TOTAL	4 studies	6 studies
Based on dentinal remineralization ability	Ozone gas + resin/GI sealant vs. resin/GI sealant Ozone gas + remineralizing solution vs. calcium hydroxide base		Unal (2015) Safwat (2017)
	TOTAL	-	2 studies

DOI: 10.30649/denta.v18i1.1

 $\bigcirc 0 \otimes 0$

DISCUSSION

Overall, the findings from this literature review showed that fissure sealant, fluoride varnish and ozone are effective in preventing caries by their own respective ways, especially in children's first permanent molars (FPM). Fissure sealant is the most widely published intervention method in the articles covered in this study.

Fissure sealants have been proven effective in preventing new caries and able to stop caries development. Two studies with randomized split mouth design for 12 months showed that first permanent molars treated with sealants had a lower risk of dentinal caries^{26,27} and had three times greater caries risk in the group without sealant²⁷. The observed caries reduction rate ranged from 12-74%. Similar results was found in the systematic review by Ahovuo-Saloranta et al³² which found 11-51% caries reduction on the teeth treated with resin sealants after 24 months. There is a relationship between sealant retention after one year and the incidence of new caries. Sealant retention was found to be good in both studies (52.7% and 41.2%), which could be the reason for the low caries rate in the resin sealant group.

Three clinical trials^{22,23,29} comparing fissure sealants with fluoride varnish, concluded that these two methods are comparable in preventing caries. This finding is supported by a recent systematic review by Kashbour et al³³, this study also states that there is no superior method between the two.

Research conducted by Chestnutt et al²⁵ with resin sealants showed a higher caries rate than Oliveira et al²² study using glass ionomer sealants, although the retention rate of resin sealants tested better than glass ionomer sealants. This contradicts the statement that there is a relationship between sealant retention and the incidence of caries alone.²⁷ This could be attributed to differences in the study period conducted.

The resin sealant was studied for 36 months, much longer than the 24 months study with glass ionomer sealants. Caries tend develop more on the teeth because of the longer research period.³⁴

Effectiveness of glass ionomer sealants in preventing caries does not depend entirely on their retention ability.35 Glass ionomer sealants also have an advantage to release fluoride over time into the oral cavity.⁶ A study in Turkey with 4 years period, concluded an increase in salivary fluoride levels after application of a glass ionomer sealant, which is thought to be capable of preventing caries and induce remineralization.³⁵ In addition, even when this type of sealant has completely disappeared clinically, a small portion of the sealant will still remain in the fissure's depth and continues to release fluoride.³⁶

A study comparing two types of sealants was carried out by Liu et al²¹ by comparing fluoride-releasing resin sealants and glass ionomer sealants. In this clinical trial, found that the two types of sealants were comparable in preventing fissure caries with molar survival rates of 93% and 96%, respectively. The caries prevention rate is slightly better on fluoride-releasing resin sealants. This may relate to the fact that fluoride-releasing resin sealants have better retention in this study. However, this does not make fluoride-releasing resin sealants superior to glass ionomer sealants. Similar findings showing that fluoride-releasing resin sealants are slightly superior to glass ionomer sealants have also been reported in other clinical trials.37,38 There is no highquality evidence comparing the two types of sealants.

Several things that can be considered when selecting the type of sealant used are whether or not adequate equipment is available and the patient's level of cooperation.³⁹ Placement of sealant with conventional method (finger press) is the

most preffered for used in remote areas with limited tools. Other caries prevention methods, such as fluoride varnish can also be carried out under limited equipment conditions.

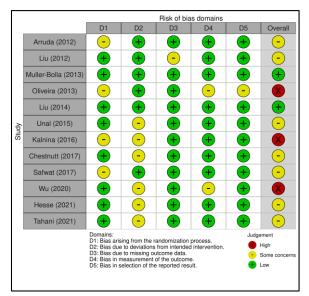
Application of a fluoride varnish containing 5% sodium fluoride twice a year is an effective and safe method to prevent caries incidence in the first permanent molars of children with high caries risk, compared to controls without intervention.⁴⁰ The included 12-month randomized controlled trial showed a decrease in DFS/DMFS score levels up to 49%²⁸ and 58.9%³⁰, respectively. The DMFS score decrease of the two studies was greater than the systematic review of Marinho et al⁴⁰ which showed an average DMFS score reduction of 43%. This is understandable as a systematic review included many articles with different initial caries levels, hence it may be a confounding variable for the study. The caries prevention rate of fluoride varnish plus oral hygiene education showed better results; therefore, it could be considered as a beneficial additional intervention.

Ozone is a new caries prevention method that has not been widely studied. Clinical trials in children with caries comparing ozone gas with control interventions were included in this study. One study²³ comparing the application of ozone before sealant with control sealant alone in children aged 7-9, found that ozone had no effect on sealant retention success, but was able to prevent incipient caries when used in conjunction with sealants containing calcium phosphate or fluoride. A study by Çelik et al⁴¹ with sectioned third molars showed a similar result. In that study, the application of ozone gas before the placement of fissure sealant was also not affecting the enamel bond strength of a giomer-based fissure sealant and recommend the use of ozone as a pretreatment disinfectant before sealant application.

A study examining ozone with or without remineralizing solution compared to calcium hydroxide base control alone²⁴, showed that ozone gas applied to dentin after excavation of damaged tissue in deep carious dentin lesions did not significantly affect the hardness and color of the dentin of young permanent molars after 12 month. Similar results were obtained in the in vitro lab tests of Duggal et al⁴² and Tahmassebi et al⁴³. Those studies reported the application of ozone alone was not effective enough to protect enamel from demineralization and provide remineralization, if not combined with remineralizing solution. There were no recent studies on the effectiveness of ozone as a caries prevention agent in children with better evidence.

Up until this research was conducted, there was only one clinical trial¹⁷ comparing fissure sealant, fluoride varnish and ozone. This study was conducted in a developing country, assessed to have high risk of bias and poor strength of recommendation as the study was disease oriented. That study stated the three methods were effective and not much different to prevent occlusal caries.

This literature study chose good quality evidence derived from randomized controlled trials and clinical trials only to avoid high risk of bias. Interventions were also chosen to be carried out directly on human subjects to provide a factual effect with an actual state of oral cavity and selected the last ten years literature, hence the data obtained had an element of novelty.


Based on the assessment of SORT recommendation, the majority of articles reviewed were limited quality clinical trials with a patient-oriented outcome (Level 2), therefore the strength of recommendation for this study is B (moderate).

Based on the subjectivity risk assessment conducted using Cochrane risk of bias version 2, the overall risk of bias in this study is considered to have some concerns.

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

The domain of bias with the worst criteria is bias arising from deviation from intended intervention with 50% (6 of 12 articles) considered to have some concerns. These related to several studies that were not reporting the allocation process and randomization sequences, and not blinding both participants and/or operators.

The result of the subjectivity risk assessment is presented in the traffic light graph reported in Graph 1.

Figure 2. Traffic light of the risk of bias assessment result

The limitations of this rapid review, namely the diversity of data obtained due to combination of various comparisons of interventions and parameters used to measure caries, as well as differences in inclusion and exclusion criteria that varied in all articles. The majority of articles reviewed also reported presence of confounding variables outside the study that could affect the study results. The disproportionate number of articles between interventions also creates some problems. The lack of articles with ozone intervention gives limited results, hence it cannot provide a more valid result.

Majority of articles reviewed are disease oriented and are not focusing on

intervention effects directly to the patient's quality of life. In addition, evaluation of subjectivity risk showed more than half of the articles reviewed had some concerns. The presence of bias in a study can cause it to be less reliable and has probability that the following outcome is interfered with by the subjects involved.

The three caries prevention methods using fluoride varnish, fissure sealant and ozone are effective in preventing caries in children with their respective advantages and disadvantages. None of the methods is superior over another as there were a variety of the data articles reported.

REFERENCES

- Cameron A, Widmer R. Handbook of Pediatric Dentistry. 4th ed. Elsevier; 2013. 283 p.
- Elfarisi RN, Susilawati S, Suwargiani AA. Kesehatan gigi dan mulut terkait kualitas hidup anak usia 4-5 tahun di Desa Cilayung. J Kedokt Gigi Univ Padjadjaran. 2018;30(2):85.
- Kementerian Kesehatan RI. Laporan Riskesdas 2018. Lap Nas Riskesdas 2018. 2018;53(9):154–65.
- 4. Colombo S, Paglia L. Dental sealants part 1: Prevention first. Eur J Paediatr Dent. 2018;19(1):80–2.
- Pandu S pandu utami, Febri liza, Hamdy Lisfrizal. The Development of the Impact of Early Childhood Caries on the Quality of Life of Children aged 3-5 Years at Paedodonti RSGM Baiturrahmah. Denta. 2021;15(2):92– 9.
- Nowak AJ, Cristensen JR, Mabry TR, Townsend JA, Wells MH. Pediatric Dentistry Infancy Through Adolescence. 6th ed. Philadelphia: Elsevier Inc; 2019. 730 p.
- 7. Mutiara H, Eddy FNE. Peranan Ibu dalam Pemeliharaan Kesehatan Gigi Anak dengan Status Karies Anak Usia Sekolah Dasar. Med J Lampung Univ [Internet]. 2015;4(8):1–6. Available from: http://juke.kedokteran.unila.ac.id/index.php/

© 080

- majority/article/view/1464 Diakses tanggal 22 November 2019
- Tickle M, O'Neill C, Donaldson M, Birch S, Noble S, Killough S, et al. A Randomized Controlled Trial of Caries Prevention in Dental Practice. J Dent Res. 2017;96(7):741–6.
- 9. R.P EB, Wardani I, Juniar E. Efektivitas Topikal Aplikasi Fluoride Menggunakan Ekstrak Teh Hijau Dibandingkan Dengan Sodium Fluoride Pada Gigi Sapi. Denta. 2015;9(2):155.
- Duggal M, Cameron A, Toumba J. Paedriatic Dentistry at A Glance. 1st ed. UK: John Wiley & Sons Inc; 2013. 122 p.
- 11. Dean JA, Vinson LAW. McDonald and Avery's Dentistry for the Child and Adolescent. In: McDonald and Avery's Dentistry for the Child and Adolescent [Internet]. 10th ed. Missouri: Elsevier; 2016. p. 710. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9 780323287456010012
- Baik A, Alamoudi N, El-Housseiny A, Altuwirqi A. Fluoride varnishes for preventing occlusal dental caries: A review. Dent J. 2021;9(6):1–15.
- John J. Textbook of Preventive and Community Dentistry. 3rd editio. New Delhi: CBS Publisher & Distributors Pvt. Ltd.; 2017. 1370 p.
- Bachtiar ZA, Putria RA. Penatalaksanaan Fissure Sealent Pada Gigi Anak (Laporan Kasus). Talent Conf Ser Trop Med. 2018;1(1):207–13.
- 15. Sanjeevi J, Santhosh Kumar MP. Ozone therapy in dentistry. Drug Invent Today. 2019;12(1):154–7.
- 16. Santos GM, Pacheco RL, Bussadori SK, Santos EM, Riera R, de Oliveira Cruz Latorraca C, et al. Effectiveness and Safety of Ozone Therapy in Dental Caries Treatment: Systematic Review and Meta-analysis. J Evid Based Dent Pract [Internet]. 2020 Dec;20(4):N.PAG-N.PAG. Available from:
 - https://search.ebscohost.com/login.aspx?direct=true&db=rzh&AN=147458917&site=ehost-live
- 17. Kalnina J, Care R. Prevention of occlusal caries using a ozone, sealant and fluoride

- varnish in children. Stomatologija. 2016;18(1):26–31.
- 18. De Castro Maymone MB, Gan SD, Bigby M. Evaluating the strength of clinical recommendations in the medical literature: GRADE, SORT, and AGREE. J Invest Dermatol [Internet]. 2014;134(10):e25. Available from: http://dx.doi.org/10.1038/jid.2014.335
- Higgins J, Savović J, Page MJ, Sterne JAC. RoB 2: A revised Cochrane risk-of-bias tool for randomized trials. Br Med J [Internet]. 2019;(July):1–24. Available from: https://methods.cochrane.org/
- Hesse D, Guglielmi C de AB, Raggio DP, Bönecker MJS, Mendes FM, Bonifácio CC. Atraumatic Restorative Treatment-Sealed versus Nonsealed First Permanent Molars: A 3-Year Split-Mouth Clinical Trial. Caries Res. 2021;55(1):12–20.
- 21. Liu BY, Xiao Y, Chu CH, Lo ECM. Glass ionomer ART sealant and fluoride-releasing resin sealant in fissure caries prevention-results from a randomized clinical trial. BMC Oral Health. 2014 May 19;14(1):54.
- 22. Oliveira DC de, Cunha RF, de Oliveira DC, Cunha RF. Comparison of the cariespreventive effect of a glass ionomer sealant and fluoride varnish on newly erupted first permanent molars of children with and without dental caries experience. Acta Odontol Scand [Internet]. 2013 May;71(3/4):972-7. Available from: https://search.ebscohost.com/login.aspx?dir ect=true&db=rzh&AN=104280555&site=eho st-live
- 23. Unal M, Oztas N. Remineralization Capacity of Three Fissure Sealants with and without Gaseous Ozone on Non-Cavitated Incipient Pit and Fissure Caries. J Clin Pediatr Dent. 2015;39(4):364–70.
- 24. Safwat O, Elkateb M, Dowidar K, El Meligy O. Clinical Evaluation of Ozone on Dentinal Lesions in Young Permanent Molars using the Stepwise Excavation. J Clin Pediatr Dent. 2017;41(6):429–41.
- 25. Chestnutt IG, Playle R, Hutchings S, Morgan-Trimmer S, Fitzsimmons D, Aawar N, et al. Fissure Seal or Fluoride Varnish? A Randomized Trial of Relative Effectiveness. J Dent Res [Internet]. 2017 Jul;96(7):754–61.

- Available from: https://search.ebscohost.com/login.aspx?dir ect=true&db=rzh&AN=123729375&site=eho st-live
- 26. Muller-Bolla M, Lupi-Pégurier L, Bardakjian H, Velly AM, Muller-Bolla M, Lupi-Pégurier L, et al. Effectiveness of school-based dental sealant programs among children from low-income backgrounds in France: a pragmatic randomized clinical trial. Community Dent Oral Epidemiol [Internet]. 2013 Jun;41(3):232–41. Available from: http://10.0.4.87/cdoe.12011
- 27. Tahani B, Asgari I, Saied Moallemi Z, Azarpazhooh A. Fissure sealant therapy as a portable community-based care in deprived regions: Effectiveness of a clinical trial after 1 year follow-up. Health Soc Care Community. 2021 Sep;29(5):1368–77.
- 28. Arruda AO, Senthamarai Kannan R, Inglehart MR, Rezende CT, Sohn W. Effect of 5% fluoride varnish application on caries among school children in rural Brazil: A randomized controlled trial. Community Dent Oral Epidemiol. 2012;40(3):267–76.
- 29. Liu BY, Lo ECM, Chu CH, Lin HC. Randomized trial on fluorides and sealants for fissure caries prevention. J Dent Res. 2012 Aug;91(8):753–8.
- 30. Wu S, Zhang T, Liu Q, Yu X, Zeng X. Effectiveness of fluoride varnish on caries in the first molars of primary schoolchildren: a 3-year longitudinal study in Guangxi Province, China. Int Dent J [Internet]. 2020;70(2):108–15. Available from: https://www.sciencedirect.com/science/article/pii/S0020653920313733
- 31. Flamee S, Gizani S, Caroni C, Papagiannoulis L, Twetman S. Effect of a chlorhexidine/thymol and a fluoride varnish on caries development in erupting permanent molars: a comparative study. Eur Arch Paediatr Dent Off J Eur Acad Paediatr Dent. 2015 Dec;16(6):449–54.
- 32. Ahovuo-Saloranta A, Forss H, Walsh T, Nordblad A, Mäkelä M, Worthington H V. Pit and fissure sealants for preventing dental decay in permanent teeth. Cochrane Database Syst Rev. 2017;2017(7).
- 33. Kashbour W, Gupta P, Worthington H V., Boyers D. Pit and fissure sealants versus

- fluoride varnishes for preventing dental decay in the permanent teeth of children and adolescents. Cochrane Database Syst Rev. 2020;2020(12).
- 34. Garg N, Garg A. Textbook of Operative Dentistry. 3rd ed. New Delhi: Jaypee Brothers Medical Publisher Ltd; 2015.
- 35. 35. Haznedaroğlu E, Güner Ş, Duman C, Menteş A. A 48-month randomized controlled trial of caries prevention effect of a one-time application of glass ionomer sealant versus resin sealant. Dent Mater J. 2016 Jun;35(3):532–8.
- 36. Guler C, Yilmaz Y. A two-year clinical evaluation of glass ionomer and ormocer based fissure sealants. J Clin Pediatr Dent. 2013;37(3):263–8.
- 37. Prathibha. Sealants revisited: An efficacy battle between the two major types of sealants A randomized controlled clinical trial. Dent Res J (Isfahan) [Internet]. 2019 Jan;16(1):36–41. Available from: https://search.ebscohost.com/login.aspx?dir ect=true&db=rzh&AN=134091001&site=eho st-live
- 38. Muñoz-Sandoval C, Gambetta-Tessini K, Giacaman RA. Microcavitated (ICDAS 3) carious lesion arrest with resin or glass ionomer sealants in first permanent molars: A randomized controlled trial. J Dent. 2019 Sep;88:103163.
- Koch G, Poulsen S, Espelid I, Haubek D. Pediatric Dentistry A Clinical Approach. 3rd editio. Sussex: Ltd., John Wiley & Sons; 2017.
- 40. VC M, JP H, Logan S, Sheiham A. Fluoride varnishes for preventing dental caries in children and adolescents. Cochrane Database Syst Rev [Internet]. 2013 Jul;(7):N.PAG-N.PAG. Available from: https://search.ebscohost.com/login.aspx?dir ect=true&db=rzh&AN=105837401&site=eho st-live
- 41. Çelik N, Yapar MI, Karalar B, Kılıç M. Influence of Laser and Ozone Pretreatment on the Shear Bond Strength of Fissure Sealants: An In Vitro Comparative Study. J Adv Oral Res. 2020;11(2):189–95.
- 42. Duggal MS, Nikolopoulou A, Tahmassebi JF.
 The Additional Effect of Ozone in combination with adjunct remineralisation

 $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

products on Inhibition of Demineralisation of the Dental Hard Tissues in Situ. J Dent [Internet]. 2012;40(11):934–40. Available from:

https://www.sciencedirect.com/science/article/pii/S0300571212001996

43. Tahmassebi JF, Chrysafi N, Duggal MS. The effect of ozone on progression or regression of artificial caries-like enamel lesions in vitro. J Dent [Internet]. 2014;42(2):167–74. Available from: http://dx.doi.org/10.1016/j.jdent.2013.11.011

<u>© 080</u>